
Introduction to OpenMP

Lecture 8: Memory model

Why do we need a memory model?

• On modern computers code is rarely executed in the

same order as it was specified in the source code.

• Compilers, processors and memory systems reorder code

to achieve maximum performance.

• Individual threads, when considered in isolation, exhibit

as-if-serial semantics.

• Programmer’s assumptions based on the memory model

hold even in the face of code reordering performed by the

compiler, the processors and the memory.

Example
• Reasoning about multithreaded execution is not that

simple.

T1 T2

x=1; int r1=y;

y=1; int r2=x;

• If there is no reordering and T2 sees value of y on read to

be 1 then the following read of x should also return the

value 1.

• If code in T1 is reordered we can no longer make this

assumption.

OpenMP Memory Model

• OpenMP supports a relaxed-consistency shared

memory model.

• Threads can maintain a temporary view of shared memory

which is not consistent with that of other threads.

• These temporary views are made consistent only at certain

points in the program.

• The operation which enforces consistency is called the flush

operation

Flush operation

• Defines a sequence point at which a thread is guaranteed to

see a consistent view of memory

• All previous read/writes by this thread have completed and are visible
to other threads

• No subsequent read/writes by this thread have occurred

• A flush operation is analogous to a fence in other shared memory
API’s

Flush and synchronization

• A flush operation is implied by OpenMP synchronizations, e.g.

• at entry/exit of parallel regions

• at implicit and explicit barriers

• at entry/exit of critical regions

• whenever a lock is set or unset

….

(but not at entry to worksharing regions or entry/exit of master regions)

• Note: using the volatile qualifier in C/C++ does not give

sufficient guarantees about multithreaded execution.

Example: producer-consumer pattern

• This is incorrect code

• The compiler and/or hardware may re-order the reads/writes

to a and flag, or flag may be held in a register.

• OpenMP has a flush directive which specifies an explicit flush

operation

• can be used to make the above example work

Thread 0

a = foo();

flag = 1;

Thread 1

while (!flag);

b = a;

Using flush

• In order for a write of a variable on one thread to be

guaranteed visible and valid on a second thread, the

following operations must occur in the following order:

1. Thread A writes the variable

2. Thread A executes a flush operation

3. Thread B executes a flush operation

4. Thread B reads the variable

Example: producer-consumer pattern
Thread 0

a = foo();

#pragma omp flush

flag = 1;

#pragma omp flush

Thread 1

#pragma omp flush

while (!flag){

#pragma omp flush

}

#pragma omp flush

b = a;

First flush ensures flag

is written after a

Second flush ensures
flag is written to

memory

First and second flushes
ensure flag is read

from memory

Third flush ensures

correct ordering of

flushes

Using flush

• Using flush correctly is difficult and prone to subtle bugs

• extremely hard to test whether code is correct

• may execute correctly on one platform/compiler but not on another

• bugs can be triggered by changing the optimisation level on the
compiler

• Don’t use it unless you are 100% confident you know

what you are doing!

• and even then……

