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Classes

• Extends derived types
• Introduces concept of type-bound procedures

• Class methods
module building

implicit none

integer, parameter :: MAXLEN = 100

type person

character(MAXLEN) :: name

integer :: officeNumber

contains

procedure, nopass :: getName

procedure :: setName

procedure :: getOfficeNumber

procedure :: setOfficeNumber

end type person

end module building

Person

name: String

officeNumber: Integer

getName(): String

setName(String): Boolean

getOfficeNumber(): Integer

setOfficeNumber(Integer)



Classes
• Extends derived types

• Introduces concept of type-bound procedures

• Class methods
module building

implicit none

integer, parameter :: MAXLEN = 100

type person

……

procedure :: setOfficeNumber => newOfficeNumber

end type person

contains

subroutine newOfficeNumber(this, officeNumber)

type(person) :: this

integer :: officeNumber

this%officeNumber = officeNumber

end subroutine

end module building

Person

name: String

officeNumber: Integer

getName(): String

setName(String): Boolean

getOfficeNumber(): Integer

setOfficeNumber(Integer)



Type bound procedure

PROCEDURE [(interface-name)] [[,binding-

attr-list ]::] binding-name[=> procedure-

name]

binding-attr-list:

• PASS, NOPASS

• NON_OVERRIDABLE

• DEFERRED

• PUBLIC, PRIVATE



Visibility

• Recall, derived type by default public

• Can make data and procedures default private using the 
private keyword

• For procedures keyword comes after contains

• Explicitly can set procedures:
• private

• public



Visibility example
module building

implicit none

private

integer, parameter :: MAXLEN = 100

type person

private

character(MAXLEN) :: name

integer :: officeNumber

contains

private

procedure, public :: getName

procedure, public :: setName

procedure, public :: getOfficeNumber

procedure, public :: setOfficeNumber

end type person

end module building



Class variable
• Type bound procedures must take a class variable

• Variable name is not prescribed (self is not a keyword)

• Automatically passed

• Allows for data polymorphism
…

contains

function getName(self)

class(person), intent(inout):: self

character(MAXLEN) :: getName

getName = self%name

end function

…

end module building

• Could then be used:
type(person) :: bob

…

write(*,*) bob%getName()

…



Unlimited type

• Allowed unlimited polymorphic type
class(*)

• Pass in any type of variable or object

• Enables truly polymorphic routines
• Combine with type-guarding for useful functionality

• If allocatable
• Either type needs specified:
class(*),allocatable :: fred

allocate(person::fred)

• Or source type needs specified:
person :: bob

class(*),allocatable :: fred

allocate(fred, source=bob)

• In this case the allocation is made and the values copies into the new object



Select type

• Type inquiry/type guarding is possible
• type is

• Type of object is the specified type

• class is

• Class of the object is the same as the specified class or an extension of that class

select type (bob)

type is (manager)

print *, ‘This is a manager’

class is (person)

print *, ‘This could be a manager or person’

class default

print *, ‘Unknown type used'

end select



Type comparison functions

• Two new intrinsic functions to inquire about types:

EXTENDS_TYPE_OF(X,Y)

• Returns true if the type of X is the same as, or extends the type of Y

• Some subtleties if Y is unallocated unlimited polymorphic type

SAME_TYPE_AS(X,Y)

• Returns true if the type of Y is the same as the type of X



Class constructor
• Can specify a constructor

• Using interface with same name as the derived type
… 

public :: person

type person

character(MAXLEN) :: name

integer :: officeNumber

contains

procedure, public :: getName

procedure, public :: setName

procedure, public :: getOfficeNumber

procedure, public :: setOfficeNumber

end type person

interface person

module procedure initialise_person

end interface

• Can be overloaded

• Not mandatory



Class destructor

• final keyword can be used to define procedure(s) to be called 
on object destruction
public :: person

type person

character(MAXLEN) :: name

integer :: officeNumber

contains

procedure, public :: getName

procedure, public :: setName

procedure, public :: getOfficeNumber

procedure, public :: setOfficeNumber

final :: cleanUp

end type person

interface person

module procedure initialise_person

end interface



Class destructor

• Final routines must take a single argument of the same type as 
the derived type, i.e.:

subroutine cleanUp(object)

type(person) :: object

…..

end subroutine cleanUp

• Final routines are not called at the end of a program:
• Termination of the program by error, by a stop statement or by execution of 

the end statement in the main program does not invoke any final subroutines 
(Modern Fortran Explained)

• If you want them to run at the end of a program wrap the main 
functionality in a subroutine



Summary

• F2003 allows tying procedures to derived types

• Creates true classes

• Class procedures, by default, pass the class as an 
argument

• Default visibility of data and procedures public

• Can easily restrict to make object safer and more object like

• Constructors and destructors available



Exercise

• Convert your basic derived types into classes by adding 
type bound procedures

• Explore unlimited polymorphism to build procedures that 
can work on different data types

• Do the same with percolate


