
Fortran classes and data 

visibility



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material 
under the following terms: You must give appropriate credit, provide a link to the license and 

indicate if changes were made. If you adapt or build on the material you must distribute your work 
under the same license as the original.

Note that this presentation may contain images owned by others. Please seek their permission 
before reusing these images.



Classes

• Extends derived types
• Introduces concept of type-bound procedures

• Class methods
module building

implicit none

integer, parameter :: MAXLEN = 100

type person

character(MAXLEN) :: name

integer :: officeNumber

contains

procedure, nopass :: getName

procedure :: setName

procedure :: getOfficeNumber

procedure :: setOfficeNumber

end type person

end module building

Person

name: String

officeNumber: Integer

getName(): String

setName(String): Boolean

getOfficeNumber(): Integer

setOfficeNumber(Integer)



Classes
• Extends derived types

• Introduces concept of type-bound procedures

• Class methods
module building

implicit none

integer, parameter :: MAXLEN = 100

type person

……

procedure :: setOfficeNumber => newOfficeNumber

end type person

contains

subroutine newOfficeNumber(this, officeNumber)

type(person) :: this

integer :: officeNumber

this%officeNumber = officeNumber

end subroutine

end module building

Person

name: String

officeNumber: Integer

getName(): String

setName(String): Boolean

getOfficeNumber(): Integer

setOfficeNumber(Integer)



Type bound procedure

PROCEDURE [(interface-name)] [[,binding-

attr-list ]::] binding-name[=> procedure-

name]

binding-attr-list:

• PASS, NOPASS

• NON_OVERRIDABLE

• DEFERRED

• PUBLIC, PRIVATE



Visibility

• Recall, derived type by default public

• Can make data and procedures default private using the 
private keyword

• For procedures keyword comes after contains

• Explicitly can set procedures:
• private

• public



Visibility example
module building

implicit none

private

integer, parameter :: MAXLEN = 100

type person

private

character(MAXLEN) :: name

integer :: officeNumber

contains

private

procedure, public :: getName

procedure, public :: setName

procedure, public :: getOfficeNumber

procedure, public :: setOfficeNumber

end type person

end module building



Class variable
• Type bound procedures must take a class variable

• Variable name is not prescribed (self is not a keyword)

• Automatically passed

• Allows for data polymorphism
…

contains

function getName(self)

class(person), intent(inout):: self

character(MAXLEN) :: getName

getName = self%name

end function

…

end module building

• Could then be used:
type(person) :: bob

…

write(*,*) bob%getName()

…



Unlimited type

• Allowed unlimited polymorphic type
class(*)

• Pass in any type of variable or object

• Enables truly polymorphic routines
• Combine with type-guarding for useful functionality

• If allocatable
• Either type needs specified:
class(*),allocatable :: fred

allocate(person::fred)

• Or source type needs specified:
person :: bob

class(*),allocatable :: fred

allocate(fred, source=bob)

• In this case the allocation is made and the values copies into the new object



Select type

• Type inquiry/type guarding is possible
• type is

• Type of object is the specified type

• class is

• Class of the object is the same as the specified class or an extension of that class

select type (bob)

type is (manager)

print *, ‘This is a manager’

class is (person)

print *, ‘This could be a manager or person’

class default

print *, ‘Unknown type used'

end select



Type comparison functions

• Two new intrinsic functions to inquire about types:

EXTENDS_TYPE_OF(X,Y)

• Returns true if the type of X is the same as, or extends the type of Y

• Some subtleties if Y is unallocated unlimited polymorphic type

SAME_TYPE_AS(X,Y)

• Returns true if the type of Y is the same as the type of X



Class constructor
• Can specify a constructor

• Using interface with same name as the derived type
… 

public :: person

type person

character(MAXLEN) :: name

integer :: officeNumber

contains

procedure, public :: getName

procedure, public :: setName

procedure, public :: getOfficeNumber

procedure, public :: setOfficeNumber

end type person

interface person

module procedure initialise_person

end interface

• Can be overloaded

• Not mandatory



Class destructor

• final keyword can be used to define procedure(s) to be called 
on object destruction
public :: person

type person

character(MAXLEN) :: name

integer :: officeNumber

contains

procedure, public :: getName

procedure, public :: setName

procedure, public :: getOfficeNumber

procedure, public :: setOfficeNumber

final :: cleanUp

end type person

interface person

module procedure initialise_person

end interface



Class destructor

• Final routines must take a single argument of the same type as 
the derived type, i.e.:

subroutine cleanUp(object)

type(person) :: object

…..

end subroutine cleanUp

• Final routines are not called at the end of a program:
• Termination of the program by error, by a stop statement or by execution of 

the end statement in the main program does not invoke any final subroutines 
(Modern Fortran Explained)

• If you want them to run at the end of a program wrap the main 
functionality in a subroutine



Summary

• F2003 allows tying procedures to derived types

• Creates true classes

• Class procedures, by default, pass the class as an 
argument

• Default visibility of data and procedures public

• Can easily restrict to make object safer and more object like

• Constructors and destructors available



Exercise

• Convert your basic derived types into classes by adding 
type bound procedures

• Explore unlimited polymorphism to build procedures that 
can work on different data types

• Do the same with percolate


